官方微信

5v太阳能路灯电路图大全(四款5v太阳能路灯原理图详解) - 电路

发布时间:2023-10-29文章来源:jjb测速

  电路图简介: 本文主要介绍了5v太阳能路灯电路图大全(四款5v太阳能路灯原理图详解)。太阳能路灯电路包括光伏电池、蓄电池、路灯和控制器四部分。设计中采用AT89S52单片机,并将其作为智能核心模块。外围电路最重要的包含太阳能电池电压采样模块、蓄电池电压采样模块、键盘电路模块、LED显示模块、充放电控制模块等。

  描述TPS61165的工作输入电源电压介于3V~18V之间,可提供高达38V的输出电压。该器件具有额定40V集成型开关FET,可驱动多达10个串联LED。其可在1.2MHz固定开关频率下工作,不仅仅可以明显降低输出纹波、提升转换效率,而且还允许使用小型外部组件。在默认情况下,白光LED(WLED)的电流由外部感测电阻RSET设定,反馈电压稳定在200mV。

  无论采用数字还是PWM调光方法,TPS61165在输出电容上的输出纹波均非常小,而且不会产生普通开启/关闭控制调光所产生的音频噪声。为了在开路LED条件下提供保护,TPS61165可禁用开关,以防止输出超过最大绝对额定值。PMP3598将TPS61165用于非同步升压设计。在运算放大器周围构建的额外电路不仅能实现电池欠压/充电指示功能,而且还能在太阳能板和电池输入之间提供ORing功能。此外,该电路还集成了必备的过热与过流保护功能,并具备负载断连特性。

  该设计的重要优点是拥有极高的效率和良好的LED稳流性能。TPS61165可在能够稳定LED电流的恒流模式下工作。CTRL引脚可同时用于数字与PWM调光的控制输入。每次启用器件时即可选择TPS61165的调光模式。通过改变反馈参考电压也可实施模拟调光。可使用20k欧的可变电阻来改变LED电流,以达到调光的目的。转换器可在350mA条件下将电压从6V提升至10.5V,转换效率不低于85%。该电路可用于驱动三个1W的LED或输入总功率不超过3W的多个50mA的LED。

  选择DS1302计时器、AT24C02存储器、4位数码显示器、过充过放电路、STC12C2051单片机等组成智能控制管理系统。根据各部分电路的功能不同,整体电路可分为以下几个部分:太阳能电池板组件、过充过放电路、STC12C2051单片机、蓄电池、时控光控电路、照明负载和时间显示电路。

  电源电路如图1所示。系统由太阳能电池板供电,24V蓄电池电压经过7805稳压后产生5V电压,作为控制器的主电源。电容C2作为高频旁路电容,将高频信号旁路到地。同样电容C1为滤波电容。

  采用时钟控器型的路灯控制器,要预先设定开关时间,使路灯按时亮灯、准时熄灯,进而达到自动控制的目的。优点是定时开关预先设定的开关时间不受外界干扰,除本身故障外不会产生误动作。缺点是不能根据季节变化和特殊的天气情况自动变换开关时间,需人工调整开关时间,费时费力,不利于节能。定时开关又分为机械钟表型和电子钟表型,机械钟表型以石英钟为主,走时精准,但是由于机芯内使用塑料齿轮在高温下会变形,因此导致停机现象。

  电子钟表型定时开关使用的也较多,常用LR6818、LM8650、LM8561等集成块为中心的电子钟电路。图2为与单片机的连接图,其中VCC1为主电源,VCC2为后备电源。在正常的情况下,SCL、I/O、RST与单片机连接实现1302的读写控制。

  存储器AT2402的1,2,3脚为空脚,4脚为接地端,5脚为数据端,6脚为时钟端,7脚为写保护端口,8脚为电源。

  AT24C02在设计中的作用是掉电存储器,是为防止电源突然断开时,用户个人信息不会丢失,存储当前设定的信息。AT24C02是Atmel公司的2kB的电可擦除存储芯片,由于AT24C02的数据线和地址线是复用的,采用串口的方式传送数据,所以只用两根线SCL(移位脉冲)和SDA(数据/地址)与单片机传送数据。电压最低可达2.5V,额定电流为1mA,静态电流10A(5.5V),芯片内的资料可在断电的情况下保存相当长的时间,而且采用8脚的DIP封装,使用起来更便捷。其与单片机的连接如图3所示。

  太阳能路灯与普通路灯控制电路功能基本相同,均是为完成晚上亮灯,早晨熄灯以及对蓄电池的充电管理。国内外常用的控制器有单独的光控制型、时钟控器型、经纬型控制器型等,但由于其工作原理不同,各有优缺点。

  路灯控制管理系统工作原理:白天光伏电池向蓄电池充电,晚上蓄电池提供电力供路灯照明。所以蓄电池将构成一个充放电循环。太阳能路灯照明控制电路包括光伏电池、蓄电池、路灯和控制器四部分。设计中采用AT89S52单片机,并将其作为智能核心模块。外围电路最重要的包含太阳能电池电压采样模块、蓄电池电压采样模块、键盘电路模块、LED显示模块、充放电控制模块等。图1是太阳能路灯控制器结构设计图。

  太阳能路灯控制器选择ATMEL公司的8位单片机AT89S52为核心的智能控制模块,在整体上具有低功耗、性能高的特点。

  系统正常工作电压为5V,系统采用12V/24V的铅酸蓄电池供电,蓄电池电压不稳定,所以要对电源进行稳压。本系统采用LM7805三端稳压器,其输入电压在5~24V时均能够保证输出为稳定的+5V。LM7805组成稳压电源只需要很少的外围元件,用起来十分便捷,工作稳定可靠J。系统电源电路如图4所示。

  太阳能电池采样和蓄电池采样对于系统正常运行起着很重要的作用。太阳能路灯控制器要对蓄电池充放电做到合理控制,即需对蓄电池、太阳能电池板电压进行采样。为此,AT89S52单片机就要外接A/D转换模块,把电压转换为数字信号,系统选用v/F转换芯片LM331组成数模转换电路。在系统采样设计中,为避免因为外部因素导致AT89S52程序跑飞或死机,提高系统稳定性,在LM331与单片机之间还需增加单通道的高速光电隔离器6n137J。图5为太阳能电池板采样电路图。系统蓄电池采样和太阳能电池板采样电路相同。

  图1所示太阳能灯电路是一种低损耗电路,使用一只7W四引脚CFL(小型荧光灯)和一块12V、7-Ahr密封免维护电池。逆变器的效率大于85%,静态电流小于2mA。它有一个带电池过放电保护功能和过充电保护功能的并联充电控制器。低静态电流、过放电保护功能和过充电保护功能三者确保电池常规使用的寿命很长。逆变器的预热功能能避免CFL两端变黑,从而延长其常规使用的寿命。这一电路可在农村地区用作一种可靠小巧的便携式光源,在城市用作应急灯系统。并联充电控制器电路包括IC1(低电流2.5V电压基准源LM385)和IC2(LM324比较器)。配有电阻R1 ~ R8和三极管Q1的IC2A可防止电池过放电。

  当电池电压低于10.8V时,该电路切断负载(逆变器和灯管),从而防止电池过放电。在无负载状况下,电池放电后的电压约为12.2V,因此,为防止出现振荡现象,电路提供的过放电复位电压为12.3V。红发光二极管LED1指示低电压状态。配有电阻R9 ~ R14和三极管Q2的IC2B可防止电池过充电。当电池电压超过14.8V时,Q2导通,并使太阳能电池阵列旁流,从而防止电池过充电。当电池电压低于12.5V时,Q2截止,太阳能板电池阵列对电池进行充电。D2为一支反向阻隔二极管。它能防电池在太阳能电池不产生电能时对太阳能电池放电。黄发光二极管LED2指示电池充满电。绿发光二极管LED3与IC2c和电阻R15 ~ R20一起,提供充电指示。

  -电子元器件采购网(。com)是本土元器件目录分销商,采用“小批量、现货、样品”销售模式,致力于实现用户多型号、高质量、快 速交付的采购需求。自建高效智能仓储,拥有自营库存超50,000种,提供一站式正品现货采购、个性化解决方案、选项替代等多元 化服务。

  “双向可控硅”:是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。

  尽管从形式上可将双向可控硅看成两只普通可控硅的组合,但实际上它是由7只晶体管和多只电阻构成的功率集成器件。小功率双向可控硅一般都会采用塑料封装,有的还带散热板。典型产品有BCMlAM(1A/600V)、BCM3AM(3A/600V)、2N6075(4A/600V),MAC218-10(8A/800V)等。

  大功率双向可双向可控硅控硅大多采用RD91型封装。双向可控硅属于NPNPN五层器件,三个电极分别是T1、T2、G。因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2表示,不再划分成阳极或阴极。其特点是,当G极和T2极相对于T1,的电压均为正时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。双向可控硅由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。

  双向可控硅可被认为是一对反并联连接的普通可控硅的集成,工作原理与普通单向可控硅相同。双向可控硅有两个主电极T1和T2, 一个门极G, 门极使器件在主电极的正反两个方向均可触发导通,所以双向可控硅在第1和第3象限有对称的伏安特性。双向可控硅门极加正、负触发脉冲都能使管子触发导通,因此有四种触发方式。双向可控硅应用为正常使用双向可控硅,需定量掌握其主要参数,对双向可控硅进行适当选用并采取对应措施以达到各参数的要求。

  1、耐压级别的选择: 通常把VDRM(断态重复峰值电压)和 VR R M(反向重复峰值电压)中较小的值标作该器件的标称电压。 选用时,额定电压应为正常工作峰值电压的2~3倍,作为允许的操作过电压裕量。

  2、电流的确定: 由于双向可控硅通常用在交流电路中,因此不用平均值而用有效值来表示它的额定电流值。由于可控硅的过载能力比一般电磁器件小,因而一般家电中选用可控硅的电流值为实际在做的工作电流值的2~3倍。 同时, 可控硅承受断态重复峰值电压VD R M 和反向重复峰值电压 V R R M 时的峰值电流应小于器件规定的IDRM 和 IRRM。

  3、通态(峰值)电压 VT M 的选择: 它是可控硅通以规定倍数额定电流时的瞬态峰值压降。为减少可控硅的热损耗,应尽可能选择VT M 小的可控硅。

  4、维持电流: IH 是维持可控硅保持通态所必需的最小主电流,它与结温有关,结温越高, 则 IH 越小。

  5、电压上升率的: dv/dt指的是在关断状态下电压的上升斜率,这是防止误触发的一个关键参数。此值超限将可能会引起可控硅出现误导通的现象。由于可控硅的制造工艺决定了 A2 与 G 之间会存在寄生电容。

  一接通电源,220V经过灯泡VR4 R19对C23充电,由于电容二端电压是不能突变的,充电需要一段时间的,充电时间由VR4和R19大小决定,越小充电越快,越大充电越慢。当C23上电压充到约为33V左右的时候DB1导通,可控硅也导通,可控硅导通后灯泡中有电流流过,灯泡就亮了。

  随着DB1导通C23上电压被完全放掉,DB1又截止可控硅也随之截止灯泡熄灭。C23上又进行刚开始一样的循环,由于时间短人眼有暂留的现象,所以灯泡看起来是一直亮的,充放电时间越短灯泡就越亮,反之,R20 C24能保护可控硅,如果用在阻性负载上可以省掉,如果是用在感性负载,比如说电动机上就要加上去,这个电路也能够适用于电动机调速上,当然是要求不高的情况下。

  这个电路的优点是元件少、成本低、性能好价格低。缺点是对电源干扰比较大、噪声大、驱动电动机时候在较小的时候可能会发热比较大。

  如图所示,VD1、VD2、C2、C3组成电容降压式直流电源,由MOS场效应管、C1等组成双向可控硅VS的触发电路。DW为保护二极管,防止场效应管栅极击穿。当按下S1时,由R1向C1充电,使栅极电压上升,双向可控硅的触发电流上升,导通角变大,光线放电,栅极电压下降,双向可控硅的导通角变小,光线都放开时,由于MOS场效应管的栅源电阻很大,C1两端的电压将基本不变,所以可控硅的导通角也将不变,光线稳定下来。场效应管JF的IDSS5mA,BVDS15V,可控硅VS选用1A/400V即可,如3CTS1A等。其它元件无特别的条件,具体数值已标在图中。电阻R1、R2的数值决定了电容C1的充放电时间。在制作时,若光线变化太快时,应适当增大R1、R2的数值,反之应减小。电路实用性非常大,在制作调试时,要耐心调试,一定会达到最佳效果。

  可控硅应用电路_相位可控硅触发电路:相位触发电路其实就是交流触发电路的一种,如图G3,这个电路的方法是利用RC回路控制触发信号的相位。当R值较少时,RC时间常数较少,触发信号的相移A1较少,因此负载获得比较大的电功率;当R值较大时,RC时间常数较大,触发信号的相移A2较大,因此负载获得较少的电功率。这个典型的电功率无级调整电路在日常生活中有很多电气产品中都应用它。

  -电子元器件采购网(www。oneyac。com)是本土元器件目录分销商,采用“小批量、现货、样品”销售模式,致力于实现用户多型号、高质量、快 速交付的采购需求。自建高效智能仓储,拥有自营库存超50,000种,提供一站式正品现货采购、个性化解决方案、选项替代等多元 化服务。

  上一篇:太阳能路灯控制电路设计的具体方案汇总(两款太阳能路灯控制电路原理图详解) - 太阳能电路

  超结MOS/低压MOS在微型逆变器上的应用-REASUNOS瑞森半导体

  高容之光 用“鑫”服务 ——三环集团&恒汇鑫科技MLCC产品发布及技术交流会圆满落幕

  技术突破瑞森半导体超小内阻20mΩ和TO-220F封装70mΩ的超结MOSFET上市

上一篇:打造区域协调发展的“潼湖样板” 下一篇:森林防火语音宣传杆